Bile Acid Sodium Symporter BASS6 Can Transport Glycolate and Is Involved in Photorespiratory Metabolism in Arabidopsis thaliana.

نویسندگان

  • Paul F South
  • Berkley J Walker
  • Amanda P Cavanagh
  • Vivien Rolland
  • Murray Badger
  • Donald R Ort
چکیده

Photorespiration is an energy-intensive process that recycles 2-phosphoglycolate, a toxic product of the Rubisco oxygenation reaction. The photorespiratory pathway is highly compartmentalized, involving the chloroplast, peroxisome, cytosol, and mitochondria. Though the soluble enzymes involved in photorespiration are well characterized, very few membrane transporters involved in photorespiration have been identified to date. In this work, Arabidopsis thaliana plants containing a T-DNA disruption of the bile acid sodium symporter BASS6 show decreased photosynthesis and slower growth under ambient, but not elevated CO2 Exogenous expression of BASS6 complemented this photorespiration mutant phenotype. In addition, metabolite analysis and genetic complementation of glycolate transport in yeast showed that BASS6 was capable of glycolate transport. This is consistent with its involvement in the photorespiratory export of glycolate from Arabidopsis chloroplasts. An Arabidopsis double knockout line of both BASS6 and the glycolate/glycerate transporter PLGG1 (bass6, plgg1) showed an additive growth defect, an increase in glycolate accumulation, and reductions in photosynthetic rates compared with either single mutant. Our data indicate that BASS6 and PLGG1 partner in glycolate export from the chloroplast, whereas PLGG1 alone accounts for the import of glycerate. BASS6 and PLGG1 therefore balance the export of two glycolate molecules with the import of one glycerate molecule during photorespiration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lack of GLYCOLATE OXIDASE1, but Not GLYCOLATE OXIDASE2, Attenuates the Photorespiratory Phenotype of CATALASE2-Deficient Arabidopsis.

The genes coding for the core metabolic enzymes of the photorespiratory pathway that allows plants with C3-type photosynthesis to survive in an oxygen-rich atmosphere, have been largely discovered in genetic screens aimed to isolate mutants that are unviable under ambient air. As an exception, glycolate oxidase (GOX) mutants with a photorespiratory phenotype have not been described yet in C3 sp...

متن کامل

An Arabidopsis thaliana mutant defective in chloroplast dicarboxylate transport.

Reactions of the photorespiratory pathway of C(3) plants are found in three subcellular organelles. Transport processes are, therefore, particularly important for maintaining the uninterrupted flow of carbon through this pathway. We describe here the isolation and characterization of a photorespiratory mutant of Arabidopsis thaliana defective in chloroplast dicarboxylate transport. Genetic anal...

متن کامل

The novel rice (Oryza sativa L.) gene OsSbf1 encodes a putative member of the Na+/bile acid symporter family.

PCR-based differential screening was used to identify ethylene-induced genes in deep-water rice (Oryza sativa L.). One of the isolated cDNAs represented a novel protein, OsSBF1, with high homology to mammalian Na+/bile acid transporters and to sodium-dependent transporters from bacteria. One highly homologous protein and three less conserved homologues were identified in Arabidopsis thaliana in...

متن کامل

Two alanine aminotranferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice

The major photorespiratory pathway in higher plants is distributed over chloroplasts, mitochondria, and peroxisomes. In this pathway, glycolate oxidation takes place in peroxisomes. It was previously suggested that a mitochondrial glycolate dehydrogenase (GlcDH) that was conserved from green algae lacking leaf-type peroxisomes contributes to photorespiration in Arabidopsis thaliana. Here, the i...

متن کامل

Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis.

Oxygenation of ribulose-1,5-bisphosphate catalyzed by Rubisco produces glycolate-2-P. The photorespiratory pathway, which consists of photorespiratory carbon and nitrogen cycles, metabolizes glycolate-2-P to the Calvin cycle intermediate glycerate-3-P and is proposed to be important for avoiding photoinhibition of photosystem II (PSII), especially in C3 plants. We show here that mutants of Arab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 29 4  شماره 

صفحات  -

تاریخ انتشار 2017